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c© Società Italiana di Fisica

Springer-Verlag 2002

Weak decays of heavy mesons in a covariant quark model

D. Mertena, R. Ricken, M. Koll, B. Metsch, and H.R. Petry

Institut für Theoretische Kernphysik, Nußallee 14–16, D-53115 Bonn, Germany

Received: 19 December 2001 / Revised version: 17 January 2002
Communicated by V.V. Anisovich

Abstract. In this paper we investigate weak decays of heavy mesons in the framework of a covariant
quark model, which is based on the Bethe-Salpeter equation in instantaneous approximation. Apart from
a phenomenological confinement potential, a residual interaction induced by instantons is adopted. Masses
and many decay observables of light mesons have already been described successfully in this model (Eur.
Phys. J. A 9, 73 (2000); 221). An appropriate extension allows a unified description of light and heavy
systems. Using a set of parameters, which are fixed by the mass spectra, we evaluate the form factors of
semileptonic decays of charmed and bottom mesons. In the heavy-quark limit these can be reduced to the
Isgur-Wise function, which is calculated. Finally, the form factors are used to determine the non-leptonic
decay rates of B-mesons in the factorization approximation.

PACS. 12.39.Ki Covariant quark model – 13.20.Fc Heavy mesons – 13.20.He Semileptonic decays

1 Introduction

In the last few years new and improved data on the spectra
and the decays of charmed and bottom mesons have be-
come available. The observations of the D∗

1 and the radial
excited D∗′ and B′ have been published recently (see [1]
and references therein). The dominant semileptonic decays
of B, D and Ds mesons have been measured with good
precision in the meantime, and data for double Cabibbo-
suppressed channels are also available. Yet many new re-
sults will be provided by the B-factories BaBar, Belle,
Hera-B and LHC-B within the next years.

For the theoretical description of these masses and
decays various ansätze are pursued. Lattice gauge the-
ory gives good results for the transition form factors
for high momentum transfer q2, while QCD sum rules
are suitable for the low-q2 regime. Heavy-quark effective
theory (HQET), which is based on a systematic expan-
sion in the inverse mass of the heavy quark, provides
some model-independent predictions, i.e. approximate de-
generated mass doublets according to different orienta-
tion of the heavy-quark spin, and a connection between
the semileptonic partial decay rate of the pseudoscalar
and pseudovector decay channels, which has been exper-
imentally confirmed. Unfortunately it cannot predict the
masses and decay rates itself, and corrections due to the
finite quark mass, at least for the charm quark, are ex-
pected to be substantial. Hence, for a consistent descrip-
tion of meson masses and decays over the full kinematic
region, constituent quark models, even if the connection

a e-mail: merten@itkp.uni-bonn.de

to the underlying theory is not quite clear, are still the
most successful tool.

In previous papers, we have developed a relativistic
constituent quark model for light mesons, which is based
on the Bethe-Salpeter equation in instantaneous approxi-
mation. Apart from a phenomenological confinement po-
tential we adopt a residual interaction induced by instan-
tons. In this model, a very good description of the light-
meson masses, from the ground state nonet up to highest
angular momenta, has been achieved. Also many decay
observables have been calculated in reasonable agreement
with the experimental data (see [2] for a recent update).
Motivated by this success, the model has been extended
for heavy flavours [3]. Thereto we do not apply the one-
gluon exchange, which is known to give a good description
of heavy quarkonia and even of the whole meson spec-
trum with a suitable inclusion of relativistic effects [4]. In-
stead, we generalize the instanton-induced interaction in a
naive way1. This is done in order to keep the model simple
and unified: the parametrization of confinement should be
valid for all flavours, and only one residual interaction is
introduced. Also the question should be raised, when and
how the model for light mesons fails, if higher quark and
meson masses are involved. It turns out, that heavy-light
mesons and, to a certain extent, heavy quarkonia can be
described in that way. The resulting spectra together with
a brief review of our model are discussed in sect. 2. Know-
ing the meson amplitudes we then calculate the semilep-
tonic decays without further parameters in sect. 3. This

1 For a similar investigation of weak meson decays in the
Bethe-Salpeter framework with the one-gluon exchange see [5].
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is done in order to test these amplitudes rather than to
determine decay rates or CKM matrix elements with high
precision. Therefore, we concentrate on the dominant pro-
cesses B → D(∗)�ν̄ and on the CKM-favoured decay chan-
nels of D and Ds mesons. Finally, in sect. 4 we investigate
non-leptonic decays of B-mesons, and sect. 5 contains our
summary.

2 The Bethe-Salpeter model

Since the model has been described earlier in greater de-
tail [6,7], we will only briefly review the main features.
The model is based on the Bethe-Salpeter equation for qq̄
bound states

χP (p) = −i SF
1

(
P

2
+ p

)

×
∫

d4p′

(2π)4
K(P ; p, p′)χP (p′)SF

2

(
−P

2
+ p′

)
, (1)

for the Bethe-Salpeter amplitude

χP (p) := 〈0|Tψ(p)ψ̄(p)|P 〉.
Here |P 〉 denotes a bound state with mass M and total
momentum P , P 2 = M2. In our ansatz the full quark
propagators SF

i are approximated by free fermion prop-
agators SF

i (p) ≈ i/ (/p − mi + iε), where the constituent
quark masses mi are introduced, which are treated as free
parameters of the model. Furthermore, the irreducible in-
teraction kernel K is assumed to be instantaneous in the
rest frame of the meson, K(P ; p, p′)|P=(M,0) = V (p,p ′).
These assumptions lead to the (full) Salpeter equation

Φ(p) = Λ−
1 (p)γ0

[∫
d3p′

(2π)3
V (p,p ′)Φ(p ′)
M + ω1 + ω2

]
γ0Λ+

2 (−p)

−Λ+
1 (p)γ0

[∫
d3p′

(2π)3
V (p,p ′)Φ(p ′)
M − ω1 − ω2

]
γ0Λ−

2 (−p)

(2)

for the Salpeter amplitude Φ(p) :=
∫ dp0

2π χP (p)|P=(M,0).
Here ωi :=

√
p 2 + m2

i and Λ± denotes the projector on
positive and negative energy solutions of the Dirac equa-
tion. For the calculation of the meson mass M and the
Salpeter amplitude Φ the Salpeter equation can be refor-
mulated to an eigen value equation, which is solved nu-
merically. This procedure is discussed in detail in [6,7].
We briefly sketch the numerical method in appendix A.

As ansatz for the interaction kernel we apply the sum
of a phenomenologically motivated confinement potential
and a residual interaction, which is induced by instantons.
Confinement is parametrized by a linearly rising potential
in configuration space with an adequate Dirac structure,
symbolically written as

VC(r) = (ac + bc · r) Γ ⊗ Γ.

To estimate the influence of the Dirac structure, two pos-
sibilities are taken into account, in the following referred

to as model A and model B: a combination of scalar and
time-like vector, which has already been discussed in [6,7]
and which is known to minimize spin-orbit splittings, and
a chirally invariant combination of scalar, pseudoscalar
and vector type, previously investigated by [8] and [9].

The additional instanton-induced residual interaction
is based on the work of ’t Hooft [10] and Shifman et al. [11].
The effect of QCD instantons on the quarks leads to an
effective two-body interaction, which can be expressed by
the following kernel in momentum space:

∫
d3p′

(2π)3
VIII(p,p ′)Φ(p ′) = 4G

∫
d3p′

(2π)3
RΛ(p,p ′)

× (
tr [11Φ(p ′)] 11 + tr

[
γ5Φ(p ′)

]
γ5

)
. (3)

The strengths of the coupling are collected in the flavour
coupling matrix

Gf2f3,f1f4 =




−gf1f2 : f1 = f3 �= f2 = f4 ,
gf1f3 : f1 = f2 �= f3 = f4 ,

0 : otherwise,
(4)

with flavour indices fi. The originally point-like interac-
tion is regularized by the function RΛ, for which a Gaus-
sian form is used.

Heavy mesons have been included in this model to
achieve a unified description of all mesons. Especially
the parametrization of confinement should be universal.
As shown in [3], this is done most successfully by ex-
tending the instanton-induced residual interaction in a
naive way for heavy-light systems. This is done at the
level of the interaction kernel eq. (3) by simply allowing
fi ∈ {u, d, s, c, b} in (4). It has to be stressed that this ex-
tension is purely phenomenologically motivated, since the
derivation leading to (3) is strictly valid for light quarks
only. Also it should be mentioned that this use of the
instanton-induced interaction allows the mixing of heavy
and light flavours in the scalar and pseudoscalar flavour-
neutral sectors. This has been investigated in [3] but will
be neglected in this paper, since the effect turned out to
be very small.

Due to the J = 0 selection rule of the residual in-
teraction, a gradual fit of the model parameters to the
light-meson masses has been performed as explained in [2],
leading to the parameter sets in table 1. The resulting
spectra of the isovector mesons are shown in fig. 1. The
Regge trajectory is reproduced excellently in both mod-
els. The spectra of the light isoscalars and kaons are of
similar quality. In particular the position of η and η′ can
be accounted for. The most significant difference between
model A and B are the masses of the scalar mesons, es-
pecially the a0(980) in fig. 1. For a detailed discussion of
these spectra we refer to [2] and [12].

Based on this parameter set the masses of the heavy
quarks have been adjusted to the J �= 0 heavy mesons. Fi-
nally, the additional couplings gfifj

have been adjusted to
reproduce the heavy-light pseudoscalar masses. We want
to stress that in this way all heavy mesons except for the
pseudoscalar D, Ds, B and Bs are described by fitting
the heavy-quark masses only. The resulting spectra are
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Table 1. The parameters of the confinement force, the ’t Hooft interaction and the constituent quark masses in models A
and B.

Parameter Model A Model B
mn (MeV) 306 380

Constituent ms (MeV) 503 550
quark masses mc (MeV) 1835 1780

mb (MeV) 5240 5092

gnn (GeV−2) 1.73 1.62
gns (GeV−2) 1.54 1.35

Residual gnc (GeV−2) 1.11 1.58
interaction gnb (GeV−2) 0.53 1.07

gsc (GeV−2) 0.65 1.27
gsb (GeV−2) 0.00 0.76
Λ (fm) 0.30 0.42

Confinement ac (GeV) −1.751 −1.135
parameters bc (GeV fm−1) 2.076 1.300

Spin structure Γ ⊗ Γ 1
2

(
11 ⊗ 11 − γ0 ⊗ γ0

)
1
2

(
11 ⊗ 11 − γ5 ⊗ γ5 − γµ ⊗ γµ

)
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Fig. 1. The spectrum of the isovector mesons. The centric column shows the experimental data from [13]. Errors are indicated
by shadowed boxes. The left and right columns show our results with model A and B, respectively.

shown in figs. 2-4 and tables 2-4. We find good agreement
for the heavy-light mesons in both models with small ad-
vantages in model B due to a larger spin-orbit splitting.
Also the gross structure of the heavy-quarkonia spectra
can be reproduced, but fine and hyperfine splittings come
out too small. This is due to the missing of a substantial
spin-orbit and spin-spin interaction, as provided, e.g., by
the one-gluon exchange potential. The radial excitations
of the Υ , on the other hand, are excellently reproduced in
model B up to the 5s state. Thus, we think that we have
reached a good overall agreement with the experimental
heavy masses and therefore have gained a good estimate

for the heavy-meson amplitudes. To test these amplitudes
further we investigate the semileptonic decays of heavy
to light mesons. The relevant current matrix elements are
calculated in lowest order after the prescription of Man-
delstam [14]. In our formalism this leads in general to

〈P ′|Jµ(q)|P 〉=
∫

d4p

(2π)4
tr

[
Γ̄P ′ (

p− q

2

)
SF

1

(
P

2
+p − q

)

×JµSF
1

(
P

2
+ p

)
ΓP (p)SF

2

(
−P

2
+p

)]

(5)
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Fig. 2. The spectra of the charmed D and Ds mesons. The
centric column shows the experimental data from [13]. Errors
are indicated by shadowed boxes. The levels marked with † are
taken from [15]. The upper and lower columns show our results
with model A and B, respectively. Note that the 1+ states are
twofold degenerated in our calculation corresponding to the
total spin S = 0 and S = 1.
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Fig. 3. The spectra of the bottom B and Bs mesons. The
centric column shows the experimental data from [13]. Errors
are indicated by shadowed boxes. The levels marked with † are
taken from [1]. The upper and lower columns show our results
with model A and B, respectively. Note that the 1+ states are
twofold degenerated in our calculation corresponding to the
total spin S = 0 and S = 1.
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Fig. 4. The spectra of heavy quarkonia. The centric column
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results with model A and B, respectively.

with the vertex function

ΓP (p) :=
[
SF

1 (
P

2
+ p)

]−1

χP (p)
[
SF

2 (−P

2
+ p)

]−1

. (6)

In the instantaneous approximation the vertex function
in the rest frame of the meson can be easily reconstructed

from the Salpeter amplitude according to

ΓP (p)|P=(M,0) = −i

∫
d3p′

(2π)3
V (p,p ′)Φ(p ′). (7)

Thus, the full 4-dimensional vertex function is known in
the rest frame. Formal covariance of our model then al-
lows to calculate the vertex function of any meson on its
mass shell, which is essential for the calculation of meson
decays.

3 Semileptonic decays

The effective Lagrangian for the semileptonic decays, e.g.
b → c transitions, after integrating out the W -boson, has
the usual V − A current-current form

Leff
cb = −GF√

2
Vcb c̄γµ(1 − γ5)b �̄γµ(1 − γ5)ν (8)

with the Cabibbo-Kobayashi-Maskawa (CKM) matrix el-
ement Vcb. Whereas the matrix elements of the leptonic
current can be calculated exactly, those of the vector (V µ)
and axial vector (Aµ) hadronic currents are parametrized
by form factors, reflecting the hadronic structure. A com-
mon parametrization is [16],

for a 0− → 0− transition, e.g., B → D�ν̄�:

〈D|V µ|B〉 = f+(q2)(Pµ
B + Pµ

D) + f−(q2)(Pµ
B − Pµ

D) (9)

and a 0− → 1− transition, e.g., B → D∗�ν̄�:

〈D∗|V µ|B〉 =
2i

mB + mD∗
εµ

νρσε∗νP ρ
BP σ

D∗V (q2) (10)

and

〈D∗|Aµ|B〉 = 2mD∗
ε∗ · q
q2

qµA0(q2)

− ε∗ · q
mB + mD∗

(
Pµ

B + Pµ
D∗ − m2

B − m2
D∗

q2
qµ

)
A2(q2)

+(mB + mD∗)
(

ε∗µ − ε∗ · q
q2

qµ

)
A1(q2), (11)

where q = PB − PD(∗) is the momentum transfer and ε
the polarization vector of the vector meson. In the limit
of vanishing lepton mass only 4 of these 6 form factors
contribute to the decay rates, namely f+, V, A1 and A2,
since terms proportional to qµ can be neglected. Then, the
differential decay rates, expressed in terms of these form
factors, are

dΓ 0−→0−

dq2
= |Vcb|2 G2

F

24π3
P 3

D|f+|2, (12)

dΓ 0−→1−

dq2
= |Vcb|2 G2

F

(2π)3
q2PD∗

12m2
B

(|H+|2 + |H−|2 + |H0|2
)
,

(13)
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Table 2. Masses of the charmed D and Ds mesons in MeV, calculated in model A and B; n denotes the radial excitation. Note
that the 1+ states are twofold degenerated corresponding to the total spin S = 0 and S = 1.

Meson (Jπ) n Model A Model B Meson (Jπ) n Model A Model B
D(0−) 0 1869 1869 Ds(0

−) 0 1969 1969
1 2677 2578 1 2794 2683
2 3258 3041 2 3388 3152

D∗(1−) 0 1993 2034 D∗
s (1−) 0 2049 2116

1 2769 2648 1 2852 2746
2 2822 2679 2 2905 2776
3 3327 3079 3 3432 3192
4 3344 3101 4 3454 3210

D∗
0(0+) 0 2519 2375 D∗

s0(0
+) 0 2563 2464

1 3115 2884 1 3196 2986

D1(1
+) 0 2464 2420 Ds1(1

+) 0 2532 2506
1 2464 2420 1 2532 2506
2 3075 2908 2 3172 3007
3 3075 2908 3 3172 3007

D∗
2(2+) 0 2475 2469 D∗

s2(2
+) 0 2541 2552

1 3086 2930 1 3182 3032
2 3128 2957 2 3223 3057

Table 3. Masses of the bottom B and Bs mesons in MeV, calculated in model A and B; n denotes the radial excitation. Note
that the 1+ states are twofold degenerated corresponding to the total spin S = 0 and S = 1.

Meson (Jπ) n Model A Model B Meson (Jπ) n Model A Model B
B(0−) 0 5279 5279 Bs(0

−) 0 5368 5369
1 6002 5869 1 6101 5960
2 6517 6279 2 6628 6376

B∗(1−) 0 5325 5346 B∗
s (1−) 0 5369 5425

1 6035 5900 1 6102 5986
2 6108 5947 2 6172 6031
3 6543 6296 3 6629 6392
4 6575 6322 4 6664 6417

B∗
0 (0+) 0 5796 5675 B∗

s0(0
+) 0 5822 5750

1 6341 6120 1 6401 6208

B1(1
+) 0 5770 5696 Bs1(1

+) 0 5822 5774
1 5770 5696 1 5822 5774
2 6322 6136 2 6401 6224
3 6322 6136 3 6401 6224

B∗
2 (2+) 0 5771 5711 B∗

s2(2
+) 0 5823 5788

1 6324 6140 1 6402 6230
2 6391 6186 2 6466 6273
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Table 4. Masses of the heavy quarkonia in MeV, calculated in model A and B; n denotes the radial excitation.

Meson (Jπc) n Model A Model B Meson (Jπc) n Model A Model B
ηc(0

−+) 0 3037 3114 ηb(0
−+) 0 9497 9562

1 3789 3708 1 10055 9983
2 4363 4147 2 10503 10318

J/Ψ(1−−) 0 3039 3133 Υ (1−−) 0 9497 9565
1 3792 3719 1 10055 9985
2 3846 3754 2 10103 10020
3 4366 4155 3 10503 10319
4 4398 4176 4 10534 10342

5 10892 10609
6 10914 10625
7 11250 10871
8 11261 10882

hc(1
+−) 0 3482 3483 hb(1

+−) 0 9824 9811
1 4110 3965 1 10304 10171

χc0(0
++) 0 3482 3449 χb0(0

++) 0 9824 9805
1 4110 3943 1 10304 10166

χc1(1
++) 0 3482 3483 χb1(1

++) 0 9824 9811
1 4110 3965 1 10304 10171

χc2(2
++) 0 3485 3508 χb2(2

++) 0 9824 9816
1 4114 3983 1 10304 10175
2 4164 4015 2 10352 10210

where we have introduced the helicity amplitudes

H±(q2) := (mB+mD∗)A1(q2) ∓ 2mBPD∗

mB+mD∗
V (q2), (14)

H0(q2) :=
m2

B − m2
D∗ − q2

2mD∗
√

q2
(mB + mD∗)A1(q2)

− 2m2
BP 2

D∗

mD∗(mB + mD∗)
√

q2
A2(q2). (15)

With regard to the processes B → D(∗)�ν̄, that is the
transition between heavy flavours, we want to summarize
the predictions of heavy-flavour symmetry. For these tran-
sitions, the Heavy-Quark Effective Theorie (HQET) pro-
vides the appropriate framework. It is based on a sys-
tematic expansion in the inverse quark mass and has
been worked out by Isgur and Wise [17,18]. In the limit
mQ → ∞ the theory will become independent of the heavy
degrees of freedom. For the spectra of heavy hadrons this
will lead to degenerated doublets, corresponding to the
two possible alignments of the heavy-quark spin. Recent
experimental results show evidence for this degeneracy in
the spectrum of the D-mesons [15]. For semileptonic de-
cays HQET predicts a connection between the form fac-
tors of 0− → 0− and 0− → 1− transitions. In particular,
in the infinite quark mass limit, the transition matrix el-
ements can be expressed by a single function only, the
Isgur-Wise function ξ, which is normalized to unity at
maximum recoil.

In this heavy-quark limit it is more natural to ex-
press the decay amplitudes in terms of velocities rather
than momenta and to introduce the dimensionless variable
ω := vBvD(∗) =

(
m2

B + m2
D(∗) − q2

)
/ (2mBmD(∗)) instead

of the momentum transfer q2. Therefore, a new set of form
factors is used [16], defined by

0− → 0− :
〈D|V µ|B〉√

mBmD
= h+(ω)(vµ

B + vµ
D) + h−(ω)(vµ

B − vµ
D), (16)

0− → 1− :
〈D∗|V µ|B〉√

mBmD∗
= iεµ

νρσε∗νvρ
Bvσ

D∗ hV (ω),

〈D∗|Aµ|B〉√
mBmD∗

= ε∗µ(ω + 1)hA1(ω) − vµ
Bε∗ · vD∗ hA2(ω)

−vµ
D∗ε

∗ · vB hA3(ω), (17)

with

mQ → ∞ : hV = hA1 = hA3 = h+ = ξ (18)
hA2 = h− = 0

in the infinite quark mass limit. The differential decay
rates are given in this framework most conveniently by

dΓ 0−→0−

dω
=

G2
F

48π3
m3

D(mB+mD)2

×(ω2 − 1)3/2|Vcb|2G2(ω), (19)



484 The European Physical Journal A

Fig. 5. The differential decay rate for B → D�ν̄. The data
are taken from [19]. The values of |Vcb| corresponding to our
calculations are |Vcb| = 0.034 and |Vcb| = 0.035 for model A
and B, respectively.

dΓ 0−→1−

dω
=

G2
F

48π3
m3

D∗(mB−mD∗)2
√

ω2−1(ω+1)2

·
[
1+

4ω

ω+1
1−2ωr∗+r2

∗
(1−r∗)2

]
|Vcb|2F2(ω), (20)

with r∗ = mD∗/mB , where the two form factors G and F
are functions of h± and hV , hAi

, respectively. This para-
metrization has the advantage that, for mQ → ∞, F and G
become equal and coincide with the Isgur-Wise function ξ.

In the following sections our results for semileptonic
B and charmed-meson decays are compared to the avail-
able experimental data and to the results of other models:
the relativised constituent quark model of Isgur and Scora
(ISGW2 [20]), the relativistic calculation of Wirbel, Stech
and Bauer in the infinite-momentum frame (WSB [21])
and the relativistic dispersion relation approach of Me-
likhov and Stech (MS [22]). Since the experiments are not
able to extract form factors from their measurements due
to missing statistics, these are usually parametrized ac-
cording to theoretical predictions. Therefore, we find it
convenient to parameterize our results in the same way,
allowing a comparison with experimental data. The accu-
racy of these parametrizations is always indicated.

3.1 Semileptonic decays of B-mesons

The decays B → D�ν̄� and B → D∗�ν̄� have been
measured by Cleo [19,23,24] and, more recently, by
Opal [25], Belle [26] and Delphi [27]. Figures 5 and 6
show our results for the differential decay rate compared
to the Cleo data [19,23]. We find good overall agree-
ment with the experimental data for both decays, using a
CKM matrix element of |Vcb| = 0.034 ± 0.001 and |Vcb| =
0.035 ± 0.001 for model A and B, respectively, which has
been determined by a χ2 fit. These values are somewhat
smaller than the PDG average of |Vcb| = 0.037 to 0.043.

Fig. 6. The differential decay rate for B → D∗�ν̄. The data
are taken from [23]. The values of |Vcb| corresponding to our
calculations are |Vcb| = 0.034 and |Vcb| = 0.035 for model A
and B, respectively.

The resulting decay rates are

model A : Γ (B → D�ν̄�) = 1.22 · 1010 s−1,

Γ (B → D∗�ν̄�) = 3.21 · 1010 s−1,

model B : Γ (B → D�ν̄�) = 1.14 · 1010 s−1,

Γ (B → D∗�ν̄�) = 3.24 · 1010 s−1.

The comparison with the current world average of the Par-
ticle Data Group [13],

PDG : Γ (B+ → D̄0�+ν�) = 1.30 ± 0.13 · 1010 s−1,

Γ (B0 → D−�+ν�) = 1.36 ± 0.12 · 1010 s−1,

Γ (B+ → D̄∗0�+ν�) = 3.21 ± 0.48 · 1010 s−1,

Γ (B0 → D∗−�+ν�) = 2.97 ± 0.17 · 1010 s−1,

as well as the recent data of Belle [26] and Delphi [27],

Belle :Γ (B̄0→D+�−ν̄�)=1.38 ± 0.08 ± 0.25 · 1010 s−1,

Belle :Γ (B̄0→D∗+�−ν̄�)=2.97 ± 0.15 ± 0.26·1010 s−1,

Delphi :Γ (B̄0→D∗+�−ν̄�)=3.01 ± 0.08+0.23
−0.20 ·1010 s−1,

shows satisfying agreement.
In table 5 our results for polarization ratios, defined by

ΓL

ΓT
=

∫
dq2q2PD∗ |H0(q2)|2∫

dq2q2PD∗ (|H+(q2)|2 + |H−(q2)|2) , (21)

Γ+

Γ−
=

∫
dq2q2PD∗ |H+(q2)|2∫
dq2q2PD∗ |H−(q2)|2 , (22)

are summarized. In these (|Vcb| independent) quantities
we find good agreement with the experimental values as
well.
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Table 5. B → D(∗)�ν̄ decay observables and form factor parameters. We use |Vcb| = 0.034(A), respectively, |Vcb| = 0.035(B),
as described in subsect. 3.1.

Parameter Exp. [13] Model A Model B ISGW2 [20] WSB [21] MS [22]

Γ (B → D)
(
1013|Vcb|2 s−1

)
— 1.05 0.93 1.19 0.808 0.86

Γ (B → D∗)
(
1013|Vcb|2 s−1

)
— 2.78 2.64 2.48 2.19 2.28

ΓL/ΓT 1.24 ± 0.16 [28] 1.14 1.20 1.04 — 1.11

Γ+/Γ− — 0.23 0.27 — — —

R1 1.18 ± 0.30 ± 0.12 1.18 1.10 1.27 1.09(a) —

R2 0.71 ± 0.22 ± 0.07 0.94 0.87 1.02 1.06(a) —

ρ2
A1 0.91 ± 0.15 ± 0.06 0.75 1.02 — — —

(a) Taken from [16].

We also show the results for the form factor ratios

R1 :=
hV (ω)
hA1(ω)

=
(

1 − q2

(mB + mD∗)2

)
V (q2)
A1(q2)

, (23)

R2 :=
hA3(ω) + mD∗

mB
hA2(ω)

hA1(ω)
=

(
1 − q2

(mB + mD∗)2

)
A2(q2)
A1(q2)

. (24)

In the heavy-quark limit these ratios are predicted to be
constant and equal to unity. In reality, due to corrections
to this limit, R1 and R2 do depend on ω, but at the scale
of the b-quark mass this dependency is expected to be
very weak. Therefore these ratios are prefered in the anal-
ysis of B → D∗�ν̄, where they are assumed to be constant,
whereas hA1 is approximated by a linear or quadratic func-
tion

hA1(ω) ≈ hA1(1)
(
1 − ρ2

A1
(ω − 1) + λA1(ω − 1)2

)
. (25)

For our form factors the ω-dependency of R1/2 is less than
2%, and the mean values are shown in table 5. The form
factor hA1 can be described by the parametrization (25)
with an accuracy of 0.1% (0.3%) for model A(B), yielding

model A : hA1(1) = 0.97, ρ2
A1

= 0.73, λA1 = 0.27,

model B : hA1(1) = 1.01, ρ2
A1

= 0.98, λA1 = 0.48,

which is in good agreement with the experimental data
shown in table 5.

Two recent measurements of B → D∗�ν̄ by the Cleo
[24] and the Opal [25] collaborations have been published,
where a different parametrization of the form factor based
on dispersion relations has been used. These analyses ex-
pand hA1 in the variable z(ω) = (

√
ω + 1−√

2)/(
√

ω + 1+√
2) and use the parametrization [29]

hA1(ω)/hA1(1) = 1−8ρ2z+(53ρ2−15)z2−(231ρ2−91)z3

with the (inconsistent) results

Opal [25] : ρ2 = 1.21 ± 0.12 ± 0.20,

Cleo [24] : ρ2 = 1.67 ± 0.11 ± 0.22.

A similar fit to our form factor gives

model A : ρ2 = 0.83, model B : ρ2 = 1.06,

with an accuracy of 1% and 0.4% for model A and B,
respectively. Thus, our calculation is rather compatible
with the Opal result.

To connect our results with the description in the
framework of HQET, we have calculated the form fac-
tors F and G (see eq. (20)) and their slopes at ω = 1
by fitting a quadratic function analogous to (25). This is
possible with an accuracy of 0.2% (0.3%) for model A(B)
and gives the result

model A : G(1) = 1.01, ρ2
G = 0.70, λG = 0.22,

F(1) = 0.97, ρ2
F = 0.65, λF = 0.20,

model B : G(1) = 1.01, ρ2
G = 0.85, λG = 0.31,

F(1) = 1.01, ρ2
F = 0.91, λF = 0.56.

These quantities G(1) and F(1) have been calculated in
the HQET. Current values are [13]:

G(1) = 1.00 ± 0.07, F(1) = 0.92 ± 0.05.

Finally, we have performed the heavy-quark limit nu-
merically in our model by scaling the quark masses with
a large factor. We find that the form factors then indeed
coincide or vanish (see eq. (18)). The resulting universal
function ξ̃, which we identify as the Isgur-Wise function
of our model, can be parametrized up to deviations of less
than 0.2% and 0.5% for model A and B as

ξ̃(ω) = ξ̃(1)(1 − ρ2
ξ̃
(ω − 1) + λξ̃(ω − 1)2),

where

model A : ξ̃(1) = 1.00, ρ2
ξ̃

= 0.78, λξ̃ = 0.31,

model B : ξ̃(1) = 1.00, ρ2
ξ̃

= 1.06, λξ̃ = 0.50.

In particular, we find that ξ̃ is indeed normalised to ξ̃(1) =
1. The ω-dependence is of course model dependent.
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Table 6. D → K(∗)�ν̄ decay observables and form factor parameters. The experimental decay rates are averaged over isospin.
We use |Vcs| = 0.975 [13].

Parameter Exp. [13] Model A Model B ISGW2 [20] WSB [21] MS [22]

Γ (D → K)
(
1010 s−1

)
7.97 ± 0.36 7.51 7.26 10.0 8.26 9.7

Γ (D → K∗)
(
1010 s−1

)
4.55 ± 0.34 7.64 10.08 5.4 9.53 6.0

ΓL/ΓT 1.14 ± 0.08 1.29 1.48 0.94 0.91 1.28

Γ+/Γ− 0.21 ± 0.04 0.23 0.34 — — —

A1(0) 0.56 ± 0.04 [16] 0.69 0.81 — 0.88 0.66

rV 1.82 ± 0.09 1.54 1.18 2.0(a) 1.44 1.56

r2 0.78 ± 0.07 0.81 0.62 1.3(a) 1.31 0.74

(a) Taken from [30].

Table 7. Ds → η/η′/φ�ν̄ decay observables and form factor parameters. The experimental decay rates are averaged over isospin.
We use |Vcs| = 0.975 [13].

Parameter Exp. [13] Model A Model B ISGW2 [20] WSB [21] MS [22]

Γ (Ds → η)
(
1010 s−1

)
5.24 ± 1.41 4.05 3.11 3.5(a) — 5.0

Γ (Ds → η′)
(
1010 s−1

)
1.80 ± 0.69 1.27 1.75 3.0(a) — 1.85

Γ (Ds → φ)
(
1010 s−1

)
4.03 ± 1.01 7.89 9.67 4.6 — 5.1

ΓL/ΓT 0.72 ± 0.18 1.20 1.42 0.96 — —

Γ+/Γ− — 0.20 0.33 — — —

A1(0) — 0.66 0.79 — — 0.65

rV 1.92 ± 0.32 1.77 1.30 2.1(b) — 1.71

r2 1.60 ± 0.24 0.85 0.63 1.3(b) — 0.72

(a) A η-η′ mixing angle of −20◦ is assumed. An angle of −10◦ would lead to 5.3 and 2.3.
(b) Taken from [31].

3.2 Semileptonic decays of charmed mesons

The semileptonic decays of charmed mesons, induced by
the quark level process c → s, have been measured for the
D → K(∗) as well as for the Ds → η/η′/φ transitions. The
results, averaged over isospin, are shown in tables 6 and 7.
For the D-meson decay D → K�ν̄ the comparison with our
calculation shows reasonable agreement for both models.
The decay to the K∗ final state however is overestimated
by about a factor of 2. The polarization observables on the
other hand are comparable with the experimental result,
whereby model A gives better agreement than model B.
This is a well-known problem of constituent quark models.
Our results are rather comparable with those of Wirbel et
al. (WSB [21]). With respect to the ISGW2 [20] predic-
tions it is interesting to note that, whereas the inclusion
of relativistic corrections was one of the main ingredients
in their model to decrease the D → K∗ decay rate, this
problem still exists in our full relativistic calculation.

Apart from the decay rates and the polarization ob-
servables, the form factor ratios at zero-momentum trans-
fer, defined by

rV :=
V (0)
A1(0)

, r2 :=
A2(0)
A1(0)

, (26)

are considered. To extract these ratios from experiment
the form factors are usually parametrized by a simple pole
ansatz with a pole mass of 2.1 GeV for the vector form
factor and 2.5 GeV for the axial form factors. We have per-
formed such a fit to our calculations, which works up to
deviations of about 6% for the form factors and of 4% for
their ratios, and have extracted the form factor ratios for
D-meson decays from these parametrizations. The results
in table 6 show that the axial form factors are generally
overrated, while our vector form factor parameters agree
with the values extracted from experiment. Thus the fail-
ure in the D → K(∗) decay rate can be traced back to this
overestimation of the axial form factors.

In this connection it is interesting to estimate the ef-
fect of the full relativistic treatment. In figs. 7-9 the pos-
itive and negative energy radial amplitudes of the D, D∗
and B mesons are plotted. It shows that at least for the
D-meson the negative energy comonents are not small.
If we neglect these components of the Salpeter ampli-
tude when reconstructing the vertex function, we can see
their impact on the current matrix elements: With this
reduced vertex function the form factor ratios rV and r2

are calculated. Hereby, we concentrate on model A, since,
as has been discussed in [12], the positive and negative
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Table 8. D → π/ρ�ν̄ decay observables and form factor parameters. We use |Vcd| = 0.222 [13].

Parameter Exp. [13] Model A Model B ISGW2 [20] WSB [21] MS [22]

Γ (D+ → π0)
(
109 s−1

)
2.9 ± 1.4 1.03 0.99 2.4 3.6 4.8

Γ (D0 → π−)
(
109 s−1

)
9.0 ± 1.5 2.06 1.99 4.8 7.1 9.6

Γ (D+ → ρ0)
(
109 s−1

)
2.1 ± 0.8 2.25 3.36 1.2 3.4 2.1

ΓL/ΓT — 1.30 1.55 0.67 0.91 1.16

Γ+/Γ− — 0.15 0.26 — — —

A1(0) — 0.58 0.72 — 0.78 0.6
rV — 1.68 1.26 — 1.58 1.48
r2 — 0.77 0.59 — 1.18 0.82

Table 9. D → η/η′/ω�ν̄ decay observables and form factor parameters. We use |Vcd| = 0.222 [13].

Parameter Exp. [13] Model A Model B ISGW2 [20] WSB [21] MS [22]

Γ (D → η)
(
109 s−1

)
— 0.79 0.95 1.5 (a) — —

Γ (D → η′)
(
109 s−1

)
— 0.14 0.16 0.3 (a) — —

Γ (D → ω)
(
109 s−1

)
— 2.23 3.35 1.2 — —

ΓL/ΓT — 1.31 1.55 0.68 — —

Γ+/Γ− — 0.15 0.26 — — —

A1(0) — 0.41 0.51 — — —
rV — 1.68 1.27 — — —
r2 — 0.77 0.59 — — —

(a) A η-η′ mixing angle of −20◦ is assumed. An angle of −10◦ would lead to 1.1 and 0.4.

Table 10. Ds → K/K∗�ν̄ decay observables and form factor parameters. We use |Vcd| = 0.222 [13].

Parameter Exp. [13] Model A Model B ISGW2 [20] WSB [21] MS [22]

Γ (Ds → K)
(
109 s−1

)
— 3.42 3.15 4.4 — 6.4

Γ (Ds → K∗)
(
109 s−1

)
— 2.71 4.54 2.2 — 3.9

ΓL/ΓT — 1.24 1.51 0.76 — 1.21

Γ+/Γ− — 0.14 0.29 — — —

A1(0) — 0.43 0.58 — — 0.57
rV — 1.86 1.26 — — 1.83
r2 — 0.76 0.56 — — 0.74

energy components of the Salpeter amplitude decouple in
the non-relativistic reduction of the Salpeter equation. We
then find that these ratios slightly rise: rV changes from
1.48 to 1.55, r2 goes from 0.78 up to 0.84 2, while the q2-
dependence is hardly changed. Thus, the modification of
a form factors by the full relativistic treatment seems to
be more complex than the intuitive correction anticipated
in [20].

The results on the semileptonic decays Ds → η and
Ds → η′ are shown in table 7. Here, it has to be stressed
that the flavour mixing of η and η′ had already been fixed
by the mass fit. No additional mixing parameter is neces-
sary. Although the differences between the results of our

2 These are the calulated values, not by results of the pole
ansatz parametrization in table 6.

two models are rather large, the experimental data do not
allow to prefer one of our parameter sets.

Our results on Ds → φ show the same behaviour as
those on D → K∗: While the decay rate is overestimated
by a factor of 2, the polarization observable is in good
agreement with the experimental data and the form fac-
tor ratio rV tends to be too small. Concerning the ratio of
axial form factors it is interesting to note that the experi-
mental value of r2 is 4 standard deviations higher than the
corresponding value for D → K∗, which is in contradic-
tion to an (approximate) flavour SU(3) symmetry. This
result, if it should be confirmed, is clearly a challenge for
any theoretical description.

Finally, to conclude the discussion of charmed-meson
decays, we report our results on the Cabibbo-suppressed
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Fig. 7. Radial amplitudes R+
00(p) (solid) and R−

00(p) (dashed)
of the D-meson Salpeter amplitude in model A (top) and B
(bottom).

process c → d in tables 8-10. The form factors again have
been parametrized by a pole ansatz with pole masses of
2.0 GeV and 2.4 GeV for the vector and axial form factors
respectively, which works up to deviations of 8% for A1(0)
and 5% for the ratios. The current experimental situation,
however, allows no evaluation of our description of these
decays.

Thus, in summary, we find excellent agreement in the
description of heavy-to-heavy transitions B → D(∗) over
the whole kinematic regime. We find also consistency with
the description of these processes in the framework of
the HQET. The results on heavy-to-light transitions are
mostly in agreement with the experimental data, but the
common problem of quark models to overestimate the ax-
ial form factors is also present here.

4 Non-leptonic weak decays

To extract further information from our meson amplitudes
we finally investigate non-leptonic decays. On tree level,
non-leptonic decays are mediated by a single W -boson
emission. Hard and soft gluonic effects however might

Fig. 8. Radial amplitudes R+
01(p) (s-wave, solid), R+

21(p) (d-
wave, dash-dotted), R−

01(p) (s-wave, dashed) and R−
21(p) (d-

wave, dotted) of the D∗-meson Salpeter amplitude in model A
(top) and B (bottom).

play a significant role in these processes. These corrections
have been calculated with great effort in the last years in
order to extract model-independent Cabibbo-Kobayashi-
Maskawa matrix elements or signatures for CP violation
in B decays from experimental data. Thereby, the hard-
and soft-gluon contributions are separated by a Wilson
operator product expansion, which results in the effective
Lagrangian, e.g., for B → Dπ transitions,

Leff
B→Dπ = −GF√

2
VcbV

∗
du

(
1
2
a1(µ)(c̄b)µ

V −A(d̄u)µV −A

+
1
2
a2(µ)(d̄b)µ

V −A(c̄u)µV −A

+
1
2
C1(µ)(d̄λAb)µ

V −A(c̄λAu)µV −A

+
1
2
C2(µ)(c̄λAb)µ

V −A(d̄λAu)µV −A

)
, (27)

with (c̄λAb)µ
V −A := c̄γµ(1 − γ5)λAb etc., a1 := C1 + 1

3C2

and a2 := C2 + 1
3C1, where C1/2 are the (scale dependent)

Wilson coefficients, and λA the SU(3) color Gell-Mann
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Fig. 9. Radial amplitudes R+
00(p) (solid) and R−

00(p) (dashed)
of the B-meson Salpeter amplitude in model A (top) and B
(bottom).

Table 11. Decay constants of pseudoscalar and pseudovector
mesons in MeV.

Meson Exp. [13] Model A Model B
π 130.7 ± 0.1 ± 0.36 212 219
K 159.8 ± 1.4 ± 0.44 248 238

D 300+180+80
−150−40

293 263

Ds 280 ± 19 ± 28 ± 34 315 284

ρ 216 ± 5 [32] 470 717
ω 195 ± 3 [32] 472 726
φ 237 ± 4 [32] 475 685
K∗ 214 ± 7 [32] 467 695
D∗ — 339 409
D∗

s — 378 445

matrices. Here we found it convenient to use an expression
symmetric under Fierz transformation. The second line
obviously does not contribute for color singlet states.

This Lagrangian gives rise to W emission diagrams.
Contributions by weak annihilation and internal W ex-
change, which are suppressed by powers of ΛQCD/mb, are
neglected.

Table 12. Non-leptonic B-decay rates Γ ( ns−1). We use
|Vcs| = 0.975, |Vud| = 0.975, |Vus| = 0.223 [13] and |Vcb| =
0.034 (A), respectively, |Vcb| = 0.035 (B), as described in sub-
sect. 3.1. The results of [32] have been adapted to the decay
constants used in our calculation.

Decay mode Exp. [13] Model A Model B NRSX [32]

B0 → D−π+ 1.94 ± 0.26 2.21 1.97 1.94

B0 → D−ρ+ 5.10 ± 0.90 5.68 6.13 4.84

B0 → D∗−π+ 1.78 ± 0.14 2.22 1.88 1.87

B0 → D∗−ρ+ 4.4 ± 2.2 6.57 6.67 5.48

B0 → D−K+ — 0.17 0.15 0.15

B0 → D−K∗+ — 0.31 0.30 0.26

B0 → D∗−K+ — 0.16 0.14 0.14

B0 → D∗−K∗+ — 0.36 0.34 0.32

B0 → D−D+ — 0.53 0.49 0.23

B0 → D−D∗+ — 0.37 0.34 0.23

B0 → D∗−D+ — 0.39 0.41 0.17

B0 → D∗−D∗+ 0.40+0.26
−0.20

0.86 0.89 0.54

B+ → D
0
D+

s 7.9 ± 2.4 8.73 8.27 6.61

B0 → D−D+
s 5.2 ± 1.9 8.73 8.27 6.61

B+ → D
0
D∗+

s 5.4 ± 2.4 6.05 5.49 6.15

B0 → D−D∗+
s 6.5 ± 3.2 6.05 5.49 6.15

B+ → D
∗0

D+
s 7.3 ± 3.0 6.14 6.47 4.49

B0 → D∗−D+
s 6.2 ± 2.2 6.14 6.47 4.49

B+ → D
∗0

D∗+
s 16.3 ± 6.0 14.68 15.24 15.8

B0 → D∗−D∗+
s 12.9 ± 4.5 14.68 15.24 15.8

Thus, the matrix element of a product of currents has
to be evaluated. This is usually done using the “factoriza-
tion approximation”, where one assumes that the ampli-
tude is dominated by its factorizable part. Then it is given
by the product of two current matrix elements, e.g., for
the transition B+ → D

0
π+:

A(B+→D
0
π+) =

GF√
2

VcbV
∗
du

{
a1〈π+|hµdu|0〉〈D

0|hµ
cb|B+〉

+a2〈D0|hµdc|0〉〈π+|hµ
ub|B+〉

}
. (28)

In this way the decay amplitude can be expressed by
the decay constant and a form factor of the semileptonic
decay at the relevant q2, e.g.,

〈π+|Jµ|0〉〈D0|J ′
µ|B+〉 =

(
m2

B − m2
D

)
fπF0(m2

π), (29)

〈π+|Jµ|0〉〈D∗0|J ′
µ|B+〉 = 2ε∗ · pBmD∗fπA0(m2

π), (30)

with the decay constants 〈0|Jµ|0−〉 = ifPµ, 〈0|Jµ|1−〉 =
mFεµ. It should be noted that the relevant form factors
are F0 and A0, which are unimportant for semileptonic de-
cays due to the smallness of the lepton mass. Hence non-
leptonic decays offer a possibility to access the remaining
semileptonic form factors, at least within the framework
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Table 13. Ratios of non-leptonic B-meson decay rates.

Decay ratio Exp. [13] Model A Model B NRSX [32]

Γ (B0 → D−π+)

Γ (B0 → D∗−π+)
1.09 ± 0.17 1.00 1.05 1.04

Γ (B0 → D−ρ+)

Γ (B0 → D∗−ρ+)
1.16 ± 0.62 0.87 0.92 0.88

Γ (B0 → D−D+
s )

Γ (B0 → D∗−D+
s )

Γ (B+ → D
0
D+

s )

Γ (B+ → D
∗0

D+
s )

0.83 ± 0.43

1.08 ± 0.56

1.42 1.28 1.47

Γ (B0 → D−D∗+
s )

Γ (B0 → D∗−D∗+
s )

Γ (B+ → D
0
D∗+

s )

Γ (B+ → D
∗0

D∗+
s )

0.50 ± 0.31

0.33 ± 0.19

0.41 0.36 0.39

of the factorization approximation. The factorization as-
sumption has been proven recently at two-loop order [33]
for a special class of decays.

In this approach, however, the resulting amplitudes are
scale dependent due to the µ-dependence of the Wilson co-
efficients, which is not canceled by the scale-independent
matrix elements. To deal with this difficulty the coeffi-
cients a1 and a2 are often treated as effective and free
parameters, corresponding to some factorization scale, to
be extracted from the data. But since we are interested
in an estimate of the quality of our form factors, we find
it sufficient to neglect all strong gluonic effects, which re-
sults in C1 = 1, C2 = 0 ≡ a1 = 1, a2 = 1

3 and restrict our
calculation to the decays of B-mesons via the emission of
a W -meson, usually called type-I decays.

The weak-decay constants are shown in table 11. Since
these are generally overestimated in our models, which
might be related to the instantaneous approximation or
the constituent quark masses, as discussed in [2], we have
used the experimental values, which are extracted from
leptonic decay or τ -decay and are summarized in table 11.
For the vector mesons D∗ and D∗

s , where no data are avail-
able yet, we use FD∗

(s)
≈ fD(s) , which is valid in the heavy-

quark limit. Deviations from this limit are expected to be
about 10–20% [32]. The relevant CKM-matrix elements
are taken from [13] except for Vcb where we use the fit
results from subsect. 3.1.

Our results for non-leptonic B-decays are shown in ta-
ble 12, compared with the experimental data from [13]
as well as the calculation of Neubert et al. [32]. We find
good agreement with the data available so far for both our
models; and for those decays, which are not measured yet,
our results are comparable with [32].

In order to stress the influence of our form factors,
we show the ratios of decay rates (in which the decay

constants as well as the coefficient a1 cancel) in table 13.
We also find good agreement with the experimental data,
however the errors are quite large.

5 Summary

In this paper we have calculated the masses and the exclu-
sive semileptonic and non-leptonic decays of heavy mesons
in a constituent quark model based on the Bethe-Salpeter
equation in instantaneous approximation. Apart from a
linear confinement potential with two different phenome-
nological Dirac structures, a flavour-dependent residual
interaction motivated by instanton effects is adopted,
which has been naively generalized to heavy flavours.
Thus, extending a very good description of light mesons,
which has recently been updated in [2], we also find good
overall agreement with the data on heavy-meson masses.

The resulting meson amplitudes are used to calculate
semileptonic decay rates. We find excellent agreement in
the description of heavy-to-heavy transitions B → D(∗)
over the whole kinematic regime. Our results are also con-
sistent with the description of these processes in the frame-
work of the HQET. The results on heavy-to-light transi-
tions are mostly in agreement with the experimental data,
but the common problem of quark models to overestimate
the axial form factors is also found here.

Finally, non-leptonic decays have then been calculated
in the approximation of factorizing matrix elements. In
spite of this simple picture, we find good agreement with
the experimental results on B-meson decays.

Financial support by funds provided by the Graduiertenkol-
leg “Die Erforschung subnuklearer Strukturen der Materie” is
gratefully acknowledged.
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Appendix A. Numerical method

In this appendix we briefly discuss the basis expansion of
the Salpeter amplitudes and vertex functions for the nu-
merical treatment of the Salpeter equation and the current
matrix elements (see [6,7] for further details). Using the
standard Dirac representation the Salpeter amplitude Φ is
a 4 × 4 matrix in Dirac space, which can be written as a
2 × 2 block matrix of the form

Φ =
(

Φ+− Φ++

Φ−− Φ−+

)
. (A.1)

In the non-relativistic limit the Φ++ component can be
identified with the ordinary Schrödinger wave function.
Due to the special projector structure of the Salpeter
equation, we find for the solutions

Λ+
1 (p)Φ(p)Λ+

2 (−p) = Λ−
1 (p)Φ(p)Λ−

2 (−p) = 0. (A.2)

Thus, only two of these four amplitudes are indepen-
dent, which allows to express Φ+−, Φ−+ in terms of
Φ++, Φ−− by

Φ+− = +
ω1

m2ω1 + m1ω2
Φ++σp − ω2

m2ω1 + m1ω2
σpΦ−−,

Φ−+ = − ω1

m2ω1 + m1ω2
Φ−−σp +

ω2

m2ω1 + m1ω2
σpΦ++.

The amplitudes Φ++ and Φ−− can be decomposed in the
general form

Φ±±
Jππc ,MJ

(p) =
∑
L,S

R(±)
LS (p)

[
YL(Ωp) × ϕ[S]

]
JMJ

, (A.3)

where ϕ[0] = 1√
2
11 and ϕ

[1]
m = 1√

2
σ

[1]
m with σ

[1]
m the spherical

tensor components of the Pauli matrices. The sum runs
over all combinations of spin S and angular momentum L
coupled to J , which are compatible with the parity and
C-parity of the state.

For the numerical solution of the Salpeter equation
the radial amplitudes R(±)

LS (p) are expanded in an L2-
orthonormal basis RnL with

R(±)
LS (p) =

∑
n

c
(±)
nLSRnL(y) ,

where
RnL(y) := NnLyLL2L+2

n (y)e−y/2, (A.4)

L2L+2
n (y) being Laguerre polynomials in the argument

y = βp, where the constant β sets the scale. The Salpeter
equation is solved in this basis by taking up to 30 basis
functions into account and using the variation principle
with respect to the scale β. The resulting radial ampli-
tudes R± for the D, D∗ and B mesons in model A and B
are shown in figs. 7-9.
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